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Abstract
Human-induced (i.e., secondary) salinization affects aquatic biodiversity and ecosystem functioning worldwide. While agricul-
ture or resource extraction are the main drivers of secondary salinization in arid and semi-arid regions of the world, the application
of deicing road salt in winter can be an important source of salts entering freshwaters in cold regions. Alpine rivers are probably
affected by salinization, especially in highly populated mountain regions, although this remains to be explored. In this study, we
analyzed multi-year conductance time series from four rivers in the European Alps and demonstrated that the application of
deicing road salt is linked to peaking rivers’ salinity levels during late winter/early spring. Especially in small catchments with
more urban surfaces close to the rivers, conductance increased during constant low-flow periods in late winter and was less
correlated with discharge than in summer. Thus, our results suggest that small rivers highly connected to urban infrastructures are
prone to considerable salinity peaks during late winter/early spring. Given the low natural level of salinities in Alpine rivers, the
aquatic biodiversity might be significantly affected by the recorded changes in conductance, with potential consequences on
ecosystem functioning. Thereby, we urge the research community to assess the impact of secondary salinization in Alpine rivers
and call for an implementation of management practices to prevent the degradation of these pristine and valuable ecosystems.
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Introduction

Freshwater habitats (e.g., lakes, rivers, streams, wetlands) are
threatened by secondary (i.e., anthropogenic) salinization
worldwide (Kaushal et al. 2018; Cañedo-Argüelles et al.
2018). For a long time, freshwater salinization has been most-
ly related to agriculture and pasture in arid and semi-arid low-
land regions (Cañedo-Argüelles 2020). However, different

studies have shown that lakes (Dugan et al. 2017) and streams
(Peters and Turk 1981; Godwin et al. 2003; Kaushal et al.
2005) are becoming increasingly saltier due to the application
of road salt to improve driving safety during winter months.
Yet, the salinization of mountain freshwater ecosystems has
been almost exclusively investigated in the USA, and it is still
poorly understood. A wider characterization and quantifica-
tion of freshwater salinization in mountain areas is urgently
needed because it could be affecting species survival
(Crowther and Hynes 1977; Collins and Russell 2009; Corsi
et al. 2010) and fitness (Karraker 2007; Hintz and Relyea
2019), as well as ecosystem functioning and services
(Millenium Ecosystem Assessment 2005; Herbert et al.
2015; Hintz and Relyea 2019).

In Alpine areas, secondary salinization has not yet been per-
ceived as a major problem due to the generally low concentra-
tion of dissolved ions in most meltwater streams (e.g., Brown
et al. 2006; Niedrist and Füreder 2016). However, in these
areas, anthropogenic inputs can disproportionally increase
baseline salinities (Olson 2019), and the relative chloride con-
centration compared with pre-polluted situations (e.g., chloride
concentration in a tributary of Mirrow Lake increased > 100
times from ~ 0.7 to ~ 80 mg Cl L−1 within 25 years (Likens
and Buso 2009), equaling an estimated increase in conductance
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from 30 to 3400 μs cm−1). The ecological effect of relative
increases in salinity needs to be considered within the context
of biodiversity conservation in Alpine freshwaters, since aquat-
ic organisms in these ecosystems have evolved under relatively
low salinities (Niedrist and Füreder 2016) and could be partic-
ularly sensitive to salinization (Kefford et al. 2016). Indeed,
laboratory studies showed that aquatic invertebrates coming
from low-conductivity rivers were more sensitive to salt pollu-
tion than the same invertebrates from higher-conductance rivers
(Clements and Kotalik 2016). This result suggests that the rel-
ative deviations from the natural background level need to be
assessed in Alpine and mountain ecosystems.

The European Alps are a mountain region that relies on tour-
ism (e.g., skiing resorts) and agriculture for economic develop-
ment. During winter, snowfall and cold conditions can cause icy
roads. In most regions of the European Alps, the use of deicing
salts to maintain clear road and other urban pavements free of ice
during winter is a common practice. For example, in the Alpine
region of Tyrol, Austria, an average of 30,000 tons of salt (sodi-
um chloride) are applied annually to approximately 2240 km of
roads (Amt der Tiroler Landesregierung, press release). During
periods of snow-removal from the roads (which is partly poured
into rivers and stored next to them), and especially during melt-
ing and precipitation events, these salts might enter the rivers, as
it has been shown for a northern Italian catchment (Nava et al.
2020) and North American (Crowther and Hynes 1977; Dugan
et al. 2020) and Scandinavian streams (Ruth 2003). In all the
cases, seasonal salinity cycles were synchronized with road salt
applications. Nevertheless, the magnitude, seasonal patterns, and
short-term variabilities of secondary salinization in Alpine rivers
remain unknown. Obtaining this information is crucial to pre-
serveAlpine river networks, which are largely unimpacted aquat-
ic ecosystems and important biodiversity hotspots (Khamis et al.
2014). Moreover, the impact of salinization in these mountain
areas could become stronger in the future due to steady increases
in water demand associated with tourism and urbanization
(Beniston 2012; Klug et al. 2012). Accordingly, the primary
objectives of this study were to (i) define temporal trends of
salinity in a selected Alpine stream based on long-term records
of specific conductance, and to (ii) compare conductance patterns
among seasons and between years in four different catchments in
the European Alps with varying degrees of urbanization.

Material and methods

Study sites

The studied sites are large Alpine rivers in the region of Tyrol,
Austria (Eastern Central Alps), that drain catchments with and
without glacial influence (Fig. 1). The monitoring stations are
located at an elevation of 777 m (Sanna, site A), 571 m (Inn,
site B), 660 m (Kitzbueheler Ache, site C), and 807 m a.s.l.

(Vils, site D), integrating water properties of streams draining
catchment areas of 708 km2 (site A), 5243 km2 (site B),
327 km2 (site C), and 198 km2 (site D), respectively. The
catchment geology of sites A, B, and C is dominated by
non-limestone bedrock, while stream D drains a catchment
with calcareous bedrock (Brandner 1980). Besides the size
of catchment areas, the monitored streams differ in their water
source contributions. While all streams are spring and snow
fed, streams A and B have additional contributions from gla-
ciers. Mean annual discharge was 20.2 m3/s (1983–2015) at
site A, 11.3 m3/s at site C (1951–2015), and 7.6 m3/s at site D,
while it was much higher (165 m3/s) at site B (1971–2015)
(BMNT Abteilung Wasserhaushalt 2018).

Data sources

Mean daily discharge data were obtained from the
Hydrographisches Jahrbuch 2015 (BMNT Abteilung
Wasserhaushalt 2018). Catchments were delineated using
QGIS (QGIS Development Team 2009) with the GRASS
GIS add-on (GRASS Development Team 2017), and ratios
of anthropogenic and glacial land cover were obtained from
freely available CORINE Land Cover (CLC) data. Digital
e l eva t i on da t a ( r e t r i eved f rom the EU- funded
COPERNICUS platform) had a 25-m resolution.

We used records of electrical conductance to indicate sa-
linity patterns in the studied streams. Electrical conductivity
(in Siemens per centimeter) can often be used as a proxy for
the concentration of dissolved ions (e.g., Williams and
Sherwood 1994; Corsi et al. 2010; Griffith 2014), since the
ionic activity largely determines the ability of a solution to
transmit electrical current. However, as conductivity also de-
pends on water temperature, the temperature-corrected electri-
cal conductivity (temperature-corrected for 25 °C), expressed
as specific conductance, is preferably used as indicator of
water quality, and to investigate biological processes
(Hayashi et al. 2012).

Continuous data were obtained from the automatic gauging
stations along the rivers Sanna, Inn, and Kitzbueheler Ache,
which monitor specific conductance of the water at 15-min
intervals and discharge as daily average. The monitoring sta-
tion at site A has been running since May 2012, and records at
site B, site C, and site D started in March 2017, in April 2017,
and in May 2018, respectively.

Analysis and statistics

Relative land use in each of the catchments was aggregated for
the following categories: urban surfaces, agricultural areas,
semi-natural areas (including forest and grassland), wetlands,
water bodies, and glaciers.

The high-frequency data of conductance and discharge
were used to calculate monthly mean time series (ts function).
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Consequently, a “Seasonal and Trend decomposition using
Loess” (STL) was performed (Cleveland et al. 1990) to de-
compose the monthly time series into long-term trends (using
a 12-month moving average), seasonal cycles, and random
(non-cyclic) variations. Simple linear models coupled with
F-tests were then used to describe and verify the overall trend
of water conductance and discharge after having removed
seasonal cycles and random residuals. For this, we considered
relationships as significant, when the probability of alpha-
error was below 5% (α = 0.05). We performed regression di-
agnostics to check model performance (normal distribution
and homoscedasticity of residuals, no influential observation).
Such time series decomposition was only possible for site A
(2012–2019), while records from the other sites were too
short. Within years, we discriminated between winter and
summer periods. “Winter” was defined as the period when
winter tires were mandatory for cars in the region
(November 1 until April 15), while “summer” was set as the
period with high meltwater runoff (May 15 until September
15). The discrepancy in specific conductance between these
seasons was expressed in absolute and relative differences.
Cross-correlation on previously pre-whitening time series
was used to assess the relationship between discharge and
conductivity (Dean and Dunsmuir 2016) in addition to

conductance–discharge plots (similar to concentration-
discharge plots (Godsey et al. 2009; Moatar et al. 2017). All
plots and analyses were performed in the R v3.6.1 (R Core
Team 2018) using the packages timeSeries (Wuertz et al.
2017), tseries (Trapletti and Hornik 2019), TSA (Cryer and
Chan 2008), and ggpubr (Kassambara 2018).

Published chloride concentrations were converted to equiv-
alent conductivities of theoretical solutions as follows:

equivalentð Þ conductivity μs
cm

� �

¼
salt concentration

g
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mol
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Results

Main land use in catchments

Semi-natural areas (forest and grassland) was identified as the
dominant land cover type in all catchments (73–92%). The
catchments of sites C and D had higher proportions of non-

Fig. 1 Study sites and catchments in the European Alps with indicated CORINE land cover types (red = urban areas, greens = forest, white/gray =
sparsely vegetated areas/rocks, light blue = glaciers and perpetual snow)
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natural areas, with 18% and 20.4% of agricultural surfaces,
and 7.9% and 5.7% of urban surfaces for sites C and D, re-
spectively (Table 1). In contrast to site C and D (both 0%), site
A and site B had a low to moderate relative and absolute
glacier-coverage in the catchments (0.9%/6 km2 and 3.5%/
185 km2, respectively). Given its small size, and contrary to
relative differences, site D had the smallest catchment area
covered by urban surfaces (Table 1). River C (medium to large
catchment size) and in particular river A (medium catchment
size) flow close to urban areas (including skiing area facilities
and high traffic close to the water), while river B drains a large
catchment area and at site D the urban land cover in the small
catchment is not close to the water.

Fluctuations in specific conductance

Overall, the conductance based on multiannual trend at site A,
the site with the longest records, increased significantly from
2012 to 2019 (F1,61 = 21.1, R2 = 0.26, p < 0.001) for
11 μs cm−1, while long-term discharge showed a non-
significant decrease (F1,70 = 3, R2 = 0.04, p = 0.088, Fig. S1).
The comparison of different resolutions of this time series
illustrates the different variability of the data. The high-
frequency fluctuations that occur during winter have not been
recorded in summer (Fig. S2).

Overall, mean monthly conductance at site A ranged from
102.1 to 240.8 μs cm−1, with a mean level of 173.1 μs cm−1

and an interquartile range of measured data from 155.0 to
191.7 μs cm−1 from May 2012 to April 2019 (Fig. 2a).
During the study period, mean monthly conductivity was sig-
nificantly higher during winter compared with summer (Fig.
2b). In all monitored years, two main peaks in mean monthly
conductance occurred: one during late winter (i.e., between
February and March), with the highest winter value,

243.1 μs cm−1, observed at the end of March 2016, and a
smaller one during summer, with the highest summer values
varying between 139.5 μs cm−1 (August 2012) and
196.8 μs cm−1 (August 2018). After removing the multi-
year trend and averagingmonthly differences of all the studied
years, we found that electrical conductance was up to
38.0 μs cm−1, 85.7 μs cm−1, or 40.9 μs cm−1 higher than the
running average in March or February for sites A, B, and C,
respectively. In contrast, the highest positive deviation of
mean monthly conductance occurred in November at site D
(44.9 μs cm−1 above running average) and the highest nega-
tive in April (with − 74.3 μs cm−1 below running average).
Mean monthly deviations during summer were low or nega-
tive in all streams, with the highest negative deviations ob-
served between April and June, depending on the study site
(Fig. 3). In addition, we observed a seasonal pattern in both
discharge and temperature time series, with highest discharges
and temperatures recorded during summer (Fig. 2c).
Conductance in sites B, C, and D also showed a seasonal
pattern with the highest values during winter, and the lowest
during summer.

Specific conductance and rivers’ discharge

Generally, conductance was negatively relatedwith discharge.
Between May 2017 and April 2019 for sites A, B, and C, and
between June 2018 and April 2019 for site D, cross-
correlation coefficients between discharge and conductivity
at lag 0 were − 0.21, − 0.39, − 0.68, and − 0.75, respectively
(p < 0.05). Conductance and discharge exhibited antagonist
seasonal fluctuations, with high discharge and low conduc-
tance during summer in most streams, and vice versa during
winter (Fig. 4). However, within the winter months character-
ized by constant low-flows and the absence of fluctuations in

Table 1 Major land cover types,
their relative and absolute
occurrence in the four
investigated hydrological
catchments, and mean (m) and
standard error (sd, 68% CI) of
daily mean specific conductance
levels of study rivers at site A, site
B, site C, and site D, including the
coordinates (latitude, longitude,
WGS 84). ‘99th percentiles’ indi-
cates the highest values in these
rivers (without outliers)

Site A Site B Site C Site D

Coordinates 47.518, 12.417 47.262, 11.381 47.519, 12.418 47.551, 10.651

Land cover category % km2 % km2 % km2 % km2

Agriculture 4.0 28.4 6.1 322.4 18.8 61.4 20.4 40.1

Urban landscape 3.5 24.9 3.0 155.1 7.9 25.7 5.7 11.2

Semi-natural areas 91.5 646.5 87.0 4561 73.2 239.5 73.0 143.4

Glaciers and perpetual snow 0.9 6.2 3.5 184.7 0.0 0 0.0 0

Inland waters 0.0 0.3 0.3 16.6 0.1 0.3 0.7 1.3

Wetlands 0.0 0.3 0.1 4.1 0.1 0.3 0.1 0.3

Electrical conductance (μs cm−1)

99th percentiles 232.5 359.6 332.0 459.2

Mean sd Mean sd Mean sd Mean sd

Overall 178.3 25.8 222.9 86.2 247.4 50.1 414.9 39.9

Summer 159.2 23.5 142.9 43.8 237.8 44.5 421.1 22.8

Winter 192.5 21.0 292.3 44.4 256.2 53.2 410.2 47.2
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discharge, we observed considerable increases and peaks in
conductance, especially towards the end of winter in February
andMarchmost clearly at sites A and C, but also at site B (Fig.
S3). In contrast, no clear discrepancies in the relationship be-
tween discharge and conductivity were observed at site D for
summer and winter (Fig. 5 and Fig. S3). When comparing the
cross-correlation between conductivity and discharge across

seasons (based on the time series subsets from summer 2018
to winter 2018/2019, Fig. S3) and the discharge-conductance
relationships of one hydrological year (Fig. 5), both variables
correlated more during summer than during winter for sites A,
B, and C (− 0.42 vs. − 0.24, − 0.64 vs. − 0.58, and − 0.78 vs. −
0.51 for summer vs. winter), while it was similar for both
periods for site D (− 0.70 vs. − 0.77, and Fig. S3).

Fig. 2 Monthly mean-specific conductance (a), its pairwise comparison
(including pairwise t test, where each pair is from 1 year) and overall
comparison between season-specific means per year (summer vs. winter,
b), and daily mean discharge and water temperature patterns (c) at site A,

the river Sanna in Tyrol, Central Alps. Blue and red areas mark high-flow
conditions during summer (May 15 until September 15, “S”) and periods
where winter tires are mandatory for cars in the region (November 1 until
April 15, “W”). Dark vertical lines indicate the beginning of each year
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Discussion

We observed a clear seasonal pattern in electrical conductance
in some of the studied streams, characterized by increases at
the end of the winter period. Seasonal changes in electrical
conductance in Alpine rivers could be attributed to the tempo-
rally varying contribution of different water sources and quan-
tities to mountain streams, especially in catchments with gla-
ciers (Gurnell and Fenn 1985; Dzikowski and Jobard 2012).
However, the high conductance at the end of the winter period
is most likely related to artificial salt inputs in those rivers,
where the usually strong relationship between electrical con-
ductance and discharge during summer has been found to be
weaker and partly reversed during winter and late winter. This
is particularly pronounced in catchments, where well-used
urban structures are close to the rivers. However, general
quantifications of urban land cover in the whole catchments
could not explain these patterns, as found in similar assess-
ments on river pollution studies (Shen et al. 2015). Despite the
low or absence of fluctuations in discharge, we observed im-
portant changes in conductance during the winter period,
while changes during summer were negatively related to
changes in discharge. Thus, the observed high conductance
levels at the end of the deicing salt application period (espe-
cially in catchments with dense urban surface areas close to
the river), also corresponding to the melting season of accu-
mulated snow and salt besides roads and streams, suggest that
road salt governs the observed trends in Alpine watersheds
with considerable connectivity to urban structures. In addition,

the effect of salt input during winter on the aquatic habitats
might also be reinforced by the lower runoff and the associat-
ed lower dilution in this Alpine dry season. Indeed, when
comparing streams of different catchment areas and different
discharges, we found that the annual variability in conduc-
tance, in particular the differences between summer and late
winter, was greater in small streams, where dilution of pollut-
ants is minimal (Williams and Melack 1997).

Besides this summer-winter pattern, our temporal data in-
dicates that the baseline of specific conductance significantly
increases over time, aligning with the global trends in fresh-
water ecosystems (e.g., Kaushal et al. 2005, 2018; Estévez
et al. 2019; Le et al. 2019). Although agriculture (Williams
2001; Cañedo-Argüelles et al. 2013) and resource extraction
(Palmer et al. 2010; Cañedo-Argüelles et al. 2012; Vidic et al.
2013) are probably the main drivers of salinizationworldwide,
this study provides further evidence that it is very likely that
the main salt input for freshwater ecosystems in mountainous
areas comes from the roads or other urban structures (Swinton
et al. 2015; Corsi et al. 2015; Hintz and Relyea 2017; Nava
et al. 2020). The observed levels and seasonal changes were
relatively small compared with other studied aquatic systems
outside the Alps (Kaushal et al. 2005; Corsi et al. 2010).
However, it should be noticed that the relative urban land-
scapes in the study catchments were very low (ranging from
3.0 to 7.9%).

Increasing salinity levels might have consequences for the
fitness of different aquatic organisms (Hintz and Relyea 2019;
Cañedo-Argüelles 2020). Until a certain level, increasing
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salinity might have positive effects on the physiology of some
species due to decreased osmoregulation activity (Kefford
et al. 2016). However, aquatic biodiversity, including bacteria
and fungi (Gonçalves et al. 2018), aquatic invertebrates
(Cañedo-Argüelles et al. 2016), fish (Hintz and Relyea
2017), and amphibians (Karraker et al. 2008) can be signifi-
cantly reduced when certain salinity level is exceeded. For
example, elevated chloride concentrations (> 1000 mg/L,
which equals an estimated conductivity of 2172 μs cm−1) in
streams at much higher levels than reported here can reduce
the biomass of autotrophic standing crops and the diversity of
benthic algae and invertebrates (e.g., Demers and Sage 1990;
Corsi et al. 2010). Besides directly reducing populations of
sensitive taxa through mortality, lower salinization events
can affect population fitness through sub-lethal effects. For
example, salinization has been shown to reduce the growth

of mayflies (Hassell et al. 2006) and fish, especially in their
early life stages (Hintz and Relyea 2017). All these impacts on
aquatic biodiversity are especially relevant for mountain
streams, since organisms in these streams have evolved under
low salt concentrations and should have a lower tolerance to
increased salt concentrations (Kefford et al. 2016).
Concordantly, Kotalik et al. (2017) showed how mountain
stream invertebrates were significantly affected by salt con-
centrations lower than those recommended by the EPA. The
short pulses of conductance during late winter observed in one
of the streams (corresponding to ~ 51% of the multiannual
monthly mean conductance) might ultimately stress aquatic
biota (microbiota, algae, invertebrates) and thereby affect eco-
system processes in these systems (Blasius and Merritt 2002;
Benbow and Merritt 2004; Cañedo-Argüelles et al. 2014;
Hintz and Relyea 2019), with potential stronger effects than
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those caused by continuous salt pollution (Marshall and
Bailey 2004).

Salinization can also increase the mobilization of other
substances (e.g., heavy metals) in soils (Acosta et al. 2011;
Schuler and Relyea 2018) or change biochemical process-
es, such as denitrification rates, nitrogen export, or release
of DOC, nitrogen, and soluble reactive phosphorus
(Herbert et al. 2015; Kaushal et al. 2019; Hintz and
Relyea 2019), with indirect effect on aquatic ecosystems

(Löfgren 2001; Bäckström et al. 2004). In times of hydro-
logical and socio-economic changes in mountain regions
(Huber et al. 2005; Hock et al. 2019), this side effect
should also be taken into account. Electrical conductance
is rarely monitored in Alpine rivers; baseline levels are
naturally low (< 400 μs in typical alpine valleys (Weijs
et al. 2013) depending on bedrock composition), and there-
fore, changes appear negligible and not alarming (but see
chloride monitoring in a highly anthropized northern
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ity

Discharge 
Fig. 5 Season-specific (summer in red and winter in blue) discharge–
conductance plots in all study sites (site A–site D) for one hydrological
year (05.2018–04.2019) with indication of the quality of the relationship
(R2) and the correlation (Pearson correlation). Since conductance is

usually negatively related to discharge (see also Brown et al. (2006) for
mountain streams), dissimilar correlations in summer and in winter (and
late winter) indicate additional influences on ion balance, apart from
discharge variabilities
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Italian catchment (Nava et al. 2020)). However, our results
call for an implementation of monitoring programs in rural
and urban Alpine catchments, since the observed fluctua-
tions might stress the biota in these rivers, which presum-
ably are adapted to low and relatively constant conductiv-
ities (Niedrist and Füreder 2016). The management of road
salt salinization in mountain areas could be considerably
improved: First, the implementation of long-term surveys
of discharge and conductance together with ion concentra-
tions, especially in low-order mountain streams, are essen-
tial to assess the temporal variability in salinity at various
time scale and especially capture salinization events
(Timpano et al. 2018). These detailed and systematically
planned surveys would serve to anticipate salinization and
to forecast salinity concentrations according to different
climatic and/or management scenarios. Indeed, some pre-
dictive models have already shown that a great percentage
of streams will double their salt concentration in Germany
(Le et al. 2019) and the USA (Olson 2019) during this
century, but no models have been developed for the Alps.
Second, alternative deicers with a lower impact on aquatic
biodiversity should also be considered (Breen 2017). Also,
calibrating the amount of salt needed by surface area to
assure driving safety and improving the equipment accura-
cy could greatly reduce salinization in mountain streams
(Kelly et al. 2010).

Conclusions

The analysis of multi-year electrical conductance time series,
obtained by the environmenta l agency of Tyrol
(Hydrographischer Dienst Tirol), provides evidence that ion
concentrations in Alpine streams peak during the end of win-
ter and underline the importance of continuous and high-
frequent salinity measurements in Alpine rivers. The changes
in electrical conductance in winter during long and constant
low-flow periods, especially in smaller catchments with low
pollutant dilution capacity (Williams and Melack 1997; Corsi
et al. 2015), and considerable urban infrastructures, suggested
that it could be related to the application of deicing road salt.
Thus, in small streams draining catchment with urban surface
areas or located close to deicing zones (streets, parking lots,
settlements), aquatic organisms could be exposed to short-
term concentrated salt pulses in these mountain streams and
can additionally be impaired by the side effects of salinization
(through mobilization of other toxic substances from soils).
However, the occurrence, the frequency, the intensities, and
the consequences of such salinity peaks for benthic organisms
are not well known (Hintz and Relyea 2019) and need to be
studied in Alpine rivers.

To estimate direct inputs from roads into near running
Alpine waters, we thus recommend to directly monitor salt

concentrations of low-discharge Alpine streams with varying
degree of road kilometers in their hydrological catchments
together with discharge data for discharge corrections
(Hirsch et al. 2015) and load comparisons over time (Runkel
et al. 2004). Additionally, assessing behavioral effects (e.g.,
invertebrate drift or emergence dynamics) due to short peaks
of electrical conductivity during winter, which corresponds to
the dry season in mountain catchments, will broaden the un-
derstanding of salinization effects for aquatic organisms in
Alpine rivers. Finally, further studies should also consider
the interaction of salts with other stressors (Velasco et al.
2019), such as materials derived from traffic (e.g., fine dust,
particulate inorganic matter, nitrogen oxide, rubber abrasion)
that accumulate in snow next to roads during the winter and
are partly transported into the rivers during spring melting
events (Krein and Schorer 2000; Kaushal et al. 2017; Müller
et al. 2020).
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